Postnatal Growth of the Human Pons: A Morphometric and Immunohistochemical Analysis

Matthew C. Tate,1,2† Robert A. Lindquist,1,3,4† Thuhien Nguyen,1,2 Nader Sanai,5 A. James Barkovich,6 Eric J. Huang,3,7 David H. Rowitch,1,2,3,8 and Arturo Alvarez-Buylla1,2,3*

1Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California – San Francisco, San Francisco, CA 94143
2Department of Neurological Surgery, University of California – San Francisco, San Francisco, CA 94143
3Neuroscience Graduate Program, University of California – San Francisco, San Francisco, CA 94143
4Medical Scientist Training Program, School of Medicine, University of California – San Francisco, San Francisco, CA 94143
5Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, AZ 85013
6Department of Radiology and Biomedical Imaging, Section of Pediatric Neuroradiology, University of California – San Francisco, San Francisco, CA 94143
7Department of Pathology, University of California – San Francisco, San Francisco, CA 94143
8Howard Hughes Medical Institute and Department of Pediatrics, University of California – San Francisco, San Francisco, CA 94143

ABSTRACT
Despite its critical importance to global brain function, the postnatal development of the human pons remains poorly understood. In the present study, we first performed magnetic resonance imaging (MRI)-based morphometric analyses of the postnatal human pons (0–18 years; n = 6–14/timepoint). Pons volume increased 6-fold from birth to 5 years, followed by continued slower growth throughout childhood. The observed growth was primarily due to expansion of the basis pontis. T2-based MRI analysis suggests that this growth is linked to increased myelination, and histological analysis of myelin basic protein in human postmortem specimens confirmed a dramatic increase in myelination during infancy. Analysis of cellular proliferation revealed many Ki67+ cells during the first 7 months of life, particularly during the first month, where proliferation was increased in the basis relative to tegmentum. The majority of proliferative cells in the postnatal pons expressed the transcription factor Olig2, suggesting an oligodendrocyte lineage. The proportion of proliferating cells that were Olig2+ was similar through the first 7 months of life and between basis and tegmentum. The number of Ki67+ cells declined dramatically from birth to 7 months and further decreased by 3 years, with a small number of Ki67+ cells observed throughout childhood. In addition, two populations of vimentin/nestin-expressing cells were identified: a dorsal group near the ventricular surface, which persists throughout childhood, and a parenchymal population that diminishes by 7 months and was not evident later in childhood. Together, our data reveal remarkable postnatal growth in the ventral pons, particularly during infancy when cells are most proliferative and myelination increases. J. Comp. Neurol. 523:449–462, 2015.

INDEXING TERMS: brainstem; pediatric; development; basis; pontine glioma; nif-0000-00217; SciRes_000114; AB_304558; AB_2109815; AB_442102; AB_396287; AB_92396; AB_91107; AB_291466; AB_2336877; AB_2336878; AB_261856; AB_2304493

The first two authors contributed equally to this work.
Grant sponsor: National Institutes of Health; Grant number: NS28478; Grant sponsor: John G. Bowes Research Fund (to A.A.-B.); Grant number: NRSA 1F32NS067889-01A1 (to M.T.); Grant sponsor: Pediatric Brain Tumor Foundation (to A.A.-B., D.H.R.), University of California; Grant number: MRPI #142675 (to E.J.H.); Grant sponsor: D.H.R. is an HHMI Investigator.
*CORRESPONDENCE TO: Arturo Alvarez-Buylla, PhD, University of California, San Francisco, Department of Neurological Surgery, 35 Medical Center Way RMB-1038, Box 0525, San Francisco, CA 94143-0525. E-mail: abuylla@stemcell.ucsf.edu
Received June 23, 2014; Revised September 30, 2014; Accepted October 6, 2014. DOI 10.1002/cne.23690
Published online October 10, 2014 in Wiley Online Library (wileyonlinelibrary.com)
© 2014 Wiley Periodicals, Inc.
The human pons, part of the brainstem, is an important relay for sensory and motor information from the forebrain to the cerebellum. In addition, the pons plays essential roles in respiration, sleep, swallowing, eye movement, hearing, facial movement/sensation, posture, and maintenance of consciousness (Saladin, 2012). Anatomically, the pons can be divided into three regions: tectum, tegmentum, and basis. The tectum is the most dorsal component and forms the roof of the 4th ventricle. The tegmentum is also located dorsally within the pons and contains important autonomic structures, as well as nuclei of cranial nerves V–VIII, which control various facial movements and sensation. The ventral portion of the pons is occupied by the basis pontis. Pontine nuclei within the basis receive inputs from descending corticopontine fibers and project to the cerebellum via the middle cerebellar peduncle.

During embryogenesis, the pons and cerebellum are formed from the metencephalon, which is derived from the rostral hindbrain (rhombencephalon) (Barkovich et al., 2009). In humans, pontine nuclei are derived from a stream of cells migrating from the rhombic lip termed the corpus pontobulbare between 8 and 20 weeks gestation (Essick, 1912). While a number of studies describe the development of the fetal pons (Nozaki et al., 1992; Fischbein et al., 1996; Hatta et al., 2007), less is known about postnatal pontine growth in humans, particularly at the cellular level. An improved understanding of the dynamics of growth and development of the human pons, particularly postnatal stem/progenitor populations, may provide insight into the development of this critical brain region and into abnormalities of the pons such as developmental malformations and pediatric gliomas (Barkovich et al., 2009). In this study, we quantified spatial and temporal growth profiles of the human pons throughout childhood using magnetic resonance imaging (MRI)-based morphometry. In addition, we examined cell proliferation and expression of progenitor markers as a function of age and location within the pons.

Materials and Methods

Brainstem morphometry

All brain MRI studies were approved by the University of California, San Francisco (UCSF) Committee on Human Research. MRI scans obtained between 2005 and 2010, for which there were no intracranial abnormalities (as noted by the official report of the neuroradiologist who interpreted the scan as part of routine clinical care), were included in the study (n = 123). For volumetric assessments (total pons, medulla, pontine tegmentum, basis pontis), T1-weighted sequences were evaluated. In addition, average T2 values for both basis and tegmentum were measured from mid-pons axial images, and the ratios of T2 intensities were used to estimate myelination in these two regions (modification of a method described by Abe et al., 2004). For each MRI, consecutive axial images extending from rostral pons (at midbrain-pons junction, just caudal to cerebral peduncles) to distal medulla (cervicomedullary junction) were analyzed. The areas (in mm²) of regions of interest (pontine tegmentum, pontine basis, medulla) were manually traced for each axial image and the volume (in mm³) estimated using measurement tools from Philips iSite Enterprise (v. 3.6) radiology software (Fig. 1). Age groups evaluated were age 0 (within 3 days of birth, normal gestational age), 3 months, 6 months, 9 months, 1 year, 3 years, 5 years, 7 years, 9 years, 11 years, 13 years, and 18 years (n = 123). Average
Volumetric growth rates for basis, tegmentum, and medulla (mm3/mo) were calculated between age groups (0–3 months, 3–6 months, 6 months to 1 year, 1–3 years, 3–5 years, 5–7 years, 7–18 years) by calculating the difference in volumetric averages of the two age groups (in mm3) and dividing by the time between ages (in months).

Human brainstem specimens and tissue preparation

Samples of postmortem human pons were collected from two sources ($n = 10$, Table 1). Specimens obtained at autopsy within the UCSF Department of Pathology as part of a standard operating procedure were transferred to 4% paraformaldehyde within 72 hours of death. All tissues were collected in accordance with the UCSF Committee on Human Research. Additional specimens harvested <24 hours postmortem and stored in 10% formalin fixative were obtained from the National Institute of Child Health and Human Development Brain and Tissue Bank for Developmental Disorders at the University of Maryland, Baltimore (contract HHSN275200900011C, ref. N01-HD-9-0011, RRID: nif-0000-00217). Fixative storage intervals for specimens included in the analysis ranged from 0–3 years. For quality control purposes, autopsy specimens that were grossly damaged or did not stain for the nuclear marker DAPI were excluded. All samples included in the analysis were derived from patients with no evidence of intracranial abnormalities.

Axial blocks of ~5 mm thickness were cryoprotected in 30% sucrose solution, snap-frozen in OCT compound (Tissue-Tek, Torrance, CA) using dry ice, and placed in a −80°C freezer for equilibration. Axial 18–20-µm thick sections were collected using a standard cryotome and mounted on glass slides (Superfrost Plus, Fischer Scientific, Waltham, MA).

Immunohistochemistry

After rinses in TNT wash buffer (1× phosphate-buffered saline, 0.05% Triton X-100), microwave or water bath antigen retrieval was performed for all sections in 0.01M citrate buffer (pH 6.0) at 95°C for 10 minutes, followed by a 20-minute cooling period. After rinsing in TNT, slides were incubated with 1–2% H$_2$O$_2$ for 30–60 minutes at room temperature to block endogenous peroxidase activity. Slides were then incubated in TNB blocking solution (0.1M Tris-HCl, pH 7.5, 0.15M NaCl, 0.5% blocking reagent from PerkinElmer, Waltham, MA) for 30 minutes at room temperature, followed by overnight incubation in primary antibodies (see Table 2 for details of primary antibodies used). Sections were then incubated for 90 minutes in biotinylated secondary antibodies (dilution 1:500; Jackson ImmunoResearch, West Grove, PA) for Ki67, nestin, mouse Olig2, and anti-myelin basic protein (MBP) primary antibodies and/or direct fluorophore-conjugated secondary antibodies (dilution 1:500; Life Technologies, Grand Island, NY) for vimentin, rabbit Olig2 antibodies, and GFAP primary antibodies. All secondary antibodies were diluted in TNB along with DAPI at 1:10,000 dilution. Biotinylated sections were then incubated in streptavidin-horseradish peroxidase (PerkinElmer) for 30 minutes, followed by application of DAB Peroxidase Substrate Kit (MBP, Vector Labs, Burlingame, CA) for 7.5 minutes or TSA fluorescent amplification (nestin, Ki67, mouse vimentin) for 4–5 minutes, which uses fluorescent conversion of tyramide substrates (PerkinElmer). For double-labeling studies, a similar protocol was employed, with the exception of administering both a biotinylated and direct fluorophore-conjugated secondary antibody simultaneously in the secondary antibody incubation step.

Antibody characterization

The details of the primary antibodies used in the study are included in Table 2. The chicken polyclonal

Table 1.

<table>
<thead>
<tr>
<th>Specimen Number</th>
<th>Postnatal Age</th>
<th>Gestational Length (wks)</th>
<th>APGAR (1,5 min)</th>
<th>Gender</th>
<th>Diagnosis</th>
<th>Postmortem Interval (hrs)</th>
<th>Year of Autopsy</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 day</td>
<td>38 1/7</td>
<td>1,0</td>
<td>F</td>
<td>Pulmonary failure</td>
<td>72</td>
<td>2011</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1 mo</td>
<td>35 6/7</td>
<td>8,8</td>
<td>M</td>
<td>Cardiac anomaly</td>
<td>36</td>
<td>2008</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2 mo</td>
<td>37</td>
<td>5,6</td>
<td>M</td>
<td>Hepatic failure</td>
<td>24</td>
<td>2011</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>7 mo</td>
<td>31 4/7</td>
<td>—</td>
<td>M</td>
<td>Cardiac anomaly</td>
<td>24</td>
<td>2011</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1.5 yr</td>
<td>—</td>
<td>F</td>
<td></td>
<td>Sepsis</td>
<td>29</td>
<td>2007</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3 yr</td>
<td>—</td>
<td>—</td>
<td>M</td>
<td>Asphyxia</td>
<td>16</td>
<td>2009</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>7 yr</td>
<td>—</td>
<td>F</td>
<td></td>
<td>Lymphoma</td>
<td>2</td>
<td>2007</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8 yr</td>
<td>—</td>
<td>M</td>
<td></td>
<td>Trauma</td>
<td>16</td>
<td>2009</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>13 yr</td>
<td>—</td>
<td>M</td>
<td></td>
<td>Trauma</td>
<td>15</td>
<td>2009</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>13.5 yr</td>
<td>—</td>
<td>M</td>
<td></td>
<td>Trauma</td>
<td>19</td>
<td>2010</td>
<td>2</td>
</tr>
</tbody>
</table>
antibody against GFAP was characterized by the manufacturer in a western blot analysis of brain tissue lysate, yielding bands at 55 kDa and 48 kDa, as well as by flow cytometry of human brain cells. The mouse monoclonal GFAP antibody was previously characterized by western blot of human glioma cell lines, yielding a band at 51 kDa, while no band was detected in human RD cells that lack GFAP (Debus et al., 1983). The rabbit polyclonal Ki67 antibody was characterized by the manufacturer to localize to the nucleus of normal and neoplastic human tissue. The mouse monoclonal Ki67 antibody was tested in western blot of proliferating cells by the manufacturer, yielding bands at 395 and 345 kDa, and immunohistochemical staining in human tonsil yielded similar results to MIB-1 antibody that also reacts with Ki67. For the rabbit polyclonal against human myelin basic protein, manufacturer data indicates western blot detected bands in mouse brain lysate (14, 17, 18, and 21 kDa), and a recent study demonstrated colocalization of this antibody with other myelin components using human adult brain immunohistochemistry (Roig et al., 2010). Western blot analysis of the rabbit polyclonal anti-nestin antibody in two distinct human glioma cell line lysates revealed a single band between 220 and 240 kDa (Messam et al., 2000). Likewise, manufacturer information for the mouse monoclonal anti-nestin antibody indicates human specificity with a 220–240 kDa band detected by western blot. The rabbit anti-Olig2 antibody was characterized via western blot of human normal human cortex and human glioma lysates (38 kDa band), as well as colocalization with PDGFRα-positive cells in human fetal white matter using double-label immunohistochemistry (Ligon et al., 2004). Specificity of the mouse monoclonal anti-Olig2 antibody was demonstrated by a lack of staining in Olig2-null brain tissue immunohistochemistry (Ligon et al., 2006). The mouse IgM anti-vimentin antibody labeled the expected 60 kDa band in western blot of human sarcoma cells (Stathopoulos et al., 1989), and western blot of human HeLa cell lysate using the mouse IgG anti-valentine antibody recognized a band at 50 kDa (Bohn et al., 1992).

For all antibodies listed, the staining protocol was optimized in single-labeling studies after varying antigen retrieval (citrate antigen retrieval), primary antibody concentration (dilution series), and secondary antibody method (fluorophore-conjugated secondary antibody versus biotinylated with TSA amplification). Given the paucity of data in the human pons for expression of the antigens of interest (Ki67, Olig2, vimentin, nestin), two independent primary antibodies, typically different host species and clonality (see Table 2), were used for each antigen to ensure specificity/sensitivity of the antibodies. Only those antibodies that produced a spatial and temporal distribution that could be confirmed with at least one other antibody were used for the study. For

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Immunogen</th>
<th>Source, Species/Clonality, Catalog no., RRID</th>
<th>Dilution</th>
<th>Tyramide Amplification</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFAP</td>
<td>bovine full length protein</td>
<td>Abcam, chicken polyclonal, Cat. no. ab4674, RRID:AB_304558</td>
<td>1:500</td>
<td>N</td>
</tr>
<tr>
<td>GFAP</td>
<td>purified GFAP from porcine spinal cord</td>
<td>EMD Millipore, mouse monoclonal IgG 1 (clone GA5), Cat. no. MAB360, RRID:AB_2109815</td>
<td>1:1,000</td>
<td>N</td>
</tr>
<tr>
<td>Ki67</td>
<td>Ki67 motif-containing cDNA fragment</td>
<td>Leica Microsystems, rabbit polyclonal, Cat. no. NCL-Ki67p, RRID:AB_442102</td>
<td>1:1,000</td>
<td>Y</td>
</tr>
<tr>
<td>Ki67</td>
<td>human Ki67</td>
<td>BD Biosciences, mouse monoclonal IgG4 (clone B56), Cat. no. 556003, RRID:AB_396287</td>
<td>1:200</td>
<td>Y</td>
</tr>
<tr>
<td>MBP</td>
<td>human myelin basic protein</td>
<td>EMD Millipore, rabbit polyclonal, Cat. no. AB980, RRID:AB_92396</td>
<td>1:500</td>
<td>N*</td>
</tr>
<tr>
<td>Nestin</td>
<td>human nestin cDNA fragment</td>
<td>EMD Millipore, rabbit polyclonal, Cat. no. AB5922, RRID:AB_91107</td>
<td>1:500</td>
<td>Y</td>
</tr>
<tr>
<td>Nestin</td>
<td>human nestin cDNA fragment</td>
<td>Covance Research Products, mouse monoclonal IgG1 (clone 2C1 3B9), Cat. no. MMS-570P-100, RRID:AB_291466</td>
<td>1:500</td>
<td>Y</td>
</tr>
<tr>
<td>Olig2</td>
<td>fusion protein containing N-terminus of mouse Olig2</td>
<td>CD Stiles/Harvard, rabbit polyclonal, Cat. no. DF308, RRID: AB_2336877</td>
<td>1:1,000</td>
<td>N</td>
</tr>
<tr>
<td>Olig2</td>
<td>fusion protein containing N-terminus of mouse Olig2</td>
<td>CD Stiles/Harvard, mouse monoclonal IgG, Cat. no. TV73–1C10, RRID: AB_2336878</td>
<td>1:500</td>
<td>Y</td>
</tr>
<tr>
<td>Vimentin</td>
<td>human thymic nuclear extract</td>
<td>Sigma-Aldrich, mouse monoclonal IgM (clone LN-6), Cat. no. V2258, RRID:AB_261856</td>
<td>1:200</td>
<td>N</td>
</tr>
<tr>
<td>Vimentin</td>
<td>bovine eye lens protein</td>
<td>Dako, mouse monoclonal IgG2a (clone Vnm 3B4), Cat. no. M7020, RRID:AB_2304493</td>
<td>1:100</td>
<td>Y</td>
</tr>
</tbody>
</table>

*Chromogenic DAB amplification.
Assessment of cell proliferation

For quantitation and mapping of cell proliferation, mid-pons axial hemisections immunostained for Ki67 were tiled at 10× magnification on an epifluorescence microscope using a Stereo Investigator automated image capture system (MBF Bioscience, Williston, VT; RRID: ScirRes_000114). Offline, all proliferating cells were marked for subsequent analysis by a blinded investigator. Criteria for inclusion as a positive Ki67 cell included clear nuclear staining of Ki67, colocalization with the nuclear marker DAPI, and lack of nonspecific staining in the same distribution. After defining tegmentum and basis contours for each hemisection, average cell density (# Ki67+ cells/mm2) for total pons, tegmentum, and basis was tabulated. Specimens were grouped into one of five age groups: I (1 day, 1 month), II (2 months, 7 months), III (1.5 years, 3 years), IV (7 years, 8 years), and V (13 years, 13.5 years). In addition, spatial distribution maps for tegmentum and basis as a function of postnatal age were plotted using StereoInvestigator software.

Olig2/Ki67 quantification

Confocal images were captured on a Leica TCS SP5 AOBS microscope (Leica Microsystems, Buffalo Grove, IL) using a 20× objective with 2.72× optical zoom to a resolution of 0.279 μm per pixel. Images were collected by automated acquisition of 0.08 mm2 fields containing only basis or only tegmentum. Between 30 and 200 fields were collected per region depending on the specimen size. Images were collected at four wavelengths corresponding to DAPI (405 nm laser), Olig2 (Alexa 488/488 nm laser), and Ki67 (Cy3/543 nm laser). In addition, an unstained channel (633 laser) was collected to identify regions of nonspecific fluorescence.

For each section, the number of Ki67+ and Olig2+/Ki67+ cells were counted by a blinded observer, and the percentage of double-positive cells (Ki67+/Olig2+/Ki67+) was calculated for tegmentum and basis at 0–1 months and 2–7 months.

Brightfield imaging of myelin stains

Tissue sections were labeled with anti-MBP antibody and detected by DAB staining as described above, then counterstained with Gill’s hematoxylin #3 (Polysciences, Warrington, PA).

Brightfield images were acquired on a DMI4000B microscope with DFC295 color camera (Leica), using LAS AF software to perform an automated tile scan of entire hemisections under a 5× objective, and to capture higher-resolution images of specific regions under a 20× objective.

Analysis

A one-way analysis of variance (ANOVA) was used to evaluate T2 ratio data and total proliferation levels as a function of time. For regional analysis of proliferation and percentage of proliferating cells that were Olig2+, a two-way ANOVA was performed to evaluate the importance of age, location, and age-location interaction on the dependent variable. Tukey post-hoc comparisons were used to examine within- and between-group differences for each ANOVA. P < 0.05 was considered significant for all statistical tests.

RESULTS

The human pons expands its volume 6-fold during postnatal child development

We first compared the postnatal growth of the medulla and pons using MRI scans from children ranging in age from birth to 18 years of age (n = 10–15/timepoint). We subdivided the pons into dorsal (tegmentum) and ventral (basis) regions. Volumetric analysis of the postnatal human pons revealed a dramatic growth over the first several years of life, with a tripling of the total pons volume in the first 6 months (average growth rate of 532.9 mm3/mo), and an additional doubling between the ages of 6 months and 5 years (rate = 106.1 mm3/mo) (Fig. 2A). Between 5 and 18 years there was continued growth of the pons, though at a more modest rate (13.7 mm3/mo). In contrast to the pons, the volume of the medulla showed less expansion over the same time periods, with growth rates of 118.7, 19.6, and –0.2 mm3/mo over the 0–6 months, 6 months to 5 years, and 5–18 years time periods, respectively.
Regional analysis showed that the growth of the pons was primarily due to a dramatic increase in the volume of the basis as compared to the tegmentum (Fig. 2B). Consistent with this preferential growth of the basis, the ratio of basis to tegmentum volume increased from 1.5 at birth to 2.0 at 3–6 months and stabilized at 2.3–2.7 for the remainder of childhood (Fig. 2C). The average volumetric growth rates of the pontine basis as a function of postnatal age (Fig. 2D) revealed three phases of growth. In the first 3 months of life, the basis dramatically expanded in volume, with a growth rate of $\frac{\text{mm}^3}{\text{mo}}$. Between 3 months and 1 year, the expansion rate decreased to $225 \frac{\text{mm}^3}{\text{mo}}$ and remained constant over this interval. After 1 year, the growth rate gradually declined to near zero from 7 years onward. In contrast, medulla and tegmentum growth rates rapidly declined by 3–6 months and 6 months to 1 year, respectively.

We next compared the T2 intensity signal in our MRI section analysis. T2 is a reflection of water content in the tissue and is inversely related to the amount of myelination (Abe et al., 2004). The ratio of T2 intensity between basis and tegmentum (Fig. 3A) decreased significantly throughout childhood (1-way ANOVA; $F_{10,90} = 26.273$, $P < 0.001$), ranging from 1.14 at birth to 0.85 at age 18. Tukey post-hoc analysis revealed that the T2 ratio at birth was significantly higher than all other time-points ($P < 0.001$) and the ratio at 3 months was significantly higher than 6 months, 9 months, and 1 year ($P < 0.01$). The T2 ratio was not statistically different between any other timepoints between 6 months and 18 years. These observations suggest that the dramatic growth of the basis during the first phase may be due in part to increased myelination. Because our T2 MRI data suggested a relative increase in myelination of the basis during the first 6 months, we performed DAB-based immunostaining of myelin basic protein in pons sections (Fig. 3B–J). We observed an increase in the extent of myelination from 1 day to 7 months, clearly visible as a progressive thickening of myelinated tracts in the basis, including the longitudinal fibers of the corticospinal tract.
(CST) and the horizontally oriented fibers within the pontine nuclei (PN). Myelination increased further from 7 months to 3 years of age. Myelin distribution at ages older than 3 years was similar to 3-year samples, and similar results were obtained by labeling myelin with Luxol Fast Blue dye (data not shown).

Spatial and temporal profile of proliferation in the postnatal human pons

The dramatic growth of the pons during postnatal life, and in particular of the basis, could be due to the addition of new cells, growth and addition of cellular processes, or both. The T2 MRI analysis and MBP...
immunohistochemistry suggested that increased myelination may partially account for this growth, particularly during the first 6 months of life. In order to determine the contribution of cell proliferation to pontine growth, we used 10 postmortem fixed human brainstem samples ranging from birth to 15 years of age (Table 1). The density of proliferating cells in the entire pons, defined as the number of Ki67 cells per mm², was determined in 20 µm transverse sections (Fig. 4A). The proliferating cell density decreased significantly with

<table>
<thead>
<tr>
<th>age</th>
<th>basis cells/mm²</th>
<th>tegmentum cells/mm²</th>
<th>total cells/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 day</td>
<td>43.22</td>
<td>15.51</td>
<td>32.04</td>
</tr>
<tr>
<td>1 mo</td>
<td>28.88</td>
<td>15.58</td>
<td>24.26</td>
</tr>
<tr>
<td>2 mo</td>
<td>2.80</td>
<td>3.08</td>
<td>2.88</td>
</tr>
<tr>
<td>7 mo</td>
<td>1.99</td>
<td>2.91</td>
<td>2.28</td>
</tr>
<tr>
<td>1.5 yr</td>
<td>0.22</td>
<td>0.37</td>
<td>0.25</td>
</tr>
<tr>
<td>3 yr</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>7 yr</td>
<td>0.05</td>
<td>0.26</td>
<td>0.10</td>
</tr>
<tr>
<td>8 yr</td>
<td>0.05</td>
<td>0.24</td>
<td>0.08</td>
</tr>
<tr>
<td>13 yr</td>
<td>0.10</td>
<td>0.07</td>
<td>0.10</td>
</tr>
<tr>
<td>13.5 yr</td>
<td>0.14</td>
<td>0.04</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Figure 4. Temporal profile of pontine proliferation. A: Raw data for proliferating cell density (#Ki67 cells/area of interest [mm²]) for each pons specimen, expressed as the total and region-specific (basis, tegmentum) densities. Age Groups I–V refer to pooled data used for time-dependent analyses of proliferation density detailed in B–E. B: Pons proliferation as a function of postnatal age, indicating a monophasic pattern of proliferation, with an ~10-fold reduction between the first month of life (I) and 2–7 months of age (II). The proliferating cell density decreased significantly with increasing age (one-way ANOVA; F₄,₅ = 49.77, P < 0.001), and a significantly higher density of Ki67 cells was observed in the 0–1 months group (I, 28.1 cells/mm²) compared to all other groups (Tukey post-hoc comparison; P < 0.001). C: Proliferation decreased to very low levels by 1.5–2 years and remained very low throughout childhood (note second graph on right with reduced density scale on y-axis for time categories III–V). Note that a few Ki67 cells are found in the pons in late childhood and adolescence. D,E: Compartmental analysis of proliferation as a function of time and location revealed decreased proliferation with increasing age and in the tegmentum relative to basis (two-way ANOVA; time: F₄,₁₀ = 49.01, P < 0.001; location: F₁,₁₀ = 7.52, P < 0.05; time*location: F₄,₁₀ = 8.32, P = 0.003). Proliferation was higher at 0–1 months (I) compared to all other timepoints (II–V) for both tegmentum (P < 0.02) and basis (P < 0.001) (Tukey post-hoc comparison). In addition, during the 0–1 months period (I) proliferation was higher in the basis relative to tegmentum (P < 0.001). At later timepoints examined in the subregion analysis (II–V), proliferating cell density within and between the two pons regions was not statistically different.
increasing age (one-way ANOVA; $F_{4,49} = 49.77$, $P < 0.001$), and a significantly higher density of Ki67$^+$ cells was observed in the 0–1 months group (I, 28.1 cells/mm2) compared to all other groups (Tukey post-hoc comparison; $P < 0.001$). In the 2–7 months group (II), the density of Ki67$^+$ was reduced/2410-fold (2.6 cells/mm2) compared to the 0–1 month group. From 2–13 years of age (Groups III–V), very low levels of proliferation were observed (0.09–0.17 cells/mm2) (Fig. 4B,C).

A similar analysis of proliferation was performed separately for the tegmentum and basis (Fig. 4D,E). A two-way ANOVA revealed that proliferation density was a function of time ($F_{4,10} = 49.01$, $P < 0.001$) and location ($F_{1,10} = 7.52$, $P < 0.05$), and there was a significant interaction between time and location ($F_{4,10} = 8.32$, $P < 0.003$). Tukey post-hoc analysis indicated that proliferation was higher at 0–1 months (Group I) compared to all other timepoints for both tegmentum $(P < 0.02)$ and basis $(P < 0.001)$. In addition, at 0–1 months, proliferation was higher $(P < 0.001)$ in the basis (36.1 cells/mm2) compared to tegmentum (15.5 cells/mm2). At the later four timepoints examined in the subregion analysis (Groups II–V), proliferating cell density within and between the two pons regions was not statistically different.

In order to detect possible foci of proliferation that may be overlooked by counting Ki67$^+$ cells throughout the pons, we constructed spatial maps to assess the distribution of proliferation within the pons as a function of postnatal age (Fig. 5). In samples from 1-day brains, a higher density of proliferating cells was seen throughout the pons as compared to later timepoints. In addition, there was an increased density of Ki67$^+$ cells within the basis compared to the tegmentum, particularly in the ventral and lateral basis. Interestingly, at this very early postnatal age, Ki67$^+$ cells were observed in clusters within white matter tracts (cerebellar peduncle, corticospinal tracts, and transverse pontine fibers). Higher levels of proliferation were also noted throughout the pons at 1 month, with corresponding increased Ki67$^+$ cell density within the basis relative to tegmentum. However, the proliferating cells were distributed in a more homogeneous manner. At 7 months, the number of Ki67$^+$ cells was markedly lower, and the relative density of proliferating cells was similar in the basis and tegmentum. In all brainstem samples analyzed from ages 1.5–13 years, Ki67$^+$ cells were rare and distributed throughout the basis and the tegmentum. The above results suggest abundant cell proliferation during the first 7 months after birth, with particularly high numbers during the first month. In order to address the possibility that the observed proliferative cells might be reactive astrocytes, we performed co-immunofluorescence for Ki67 and the astrocyte marker GFAP (Fig. 6F). Confocal microscopy demonstrated that GFAP$^+$ processes did not surround Ki67$^+$ nuclei. In fact, we observed no reactive astrocytes in our autopsy samples, but rather a network of normal, thin GFAP$^+$ astrocyte processes throughout the tissue.

Majority of postnatal proliferating cells are Olig2$^+$

The MRI-based morphometric data showed robust growth and increased myelination in the early postnatal pons. The histological analysis of pontine postmortem tissue also showed cellular proliferation in the white matter regions. These observations led us to analyze the proportion of proliferating cells expressing Olig2, a progenitor marker that is frequently associated with the generation of oligodendrocytes. Human pons sections...
ranging from 1 day to 7 months were double-labeled for Ki67 and Olig2, and the tegmentum and basis were analyzed (Fig. 6). In the 0–1 month group, double-labeled Olig2+/Ki67+ cells were seen in both the basis and the tegmentum. Increased density of both single-labeled (Ki67+) and double-labeled (Olig2+/Ki67+) cells were observed in the basis relative to tegmentum. The majority of Ki67+ cells in the basis were Olig2+ (57.0 ± 3.5%), but single-labeled cells for either marker were also observed (Fig. 6). By 2–7 months of age, the number of Ki67+ and Ki67+/Olig2+ cells declined in both pons locations relative to the 0–1 month group, consistent with the proliferation analysis described earlier. However, despite the smaller number of

![Image](image-url)

Figure 6. Olig2/Ki67 immunohistochemistry. Confocal microscopy of sections from 1-day-old human mid-pons basis labeled with DAPI (A), Olig2 (B), Ki67 (C), and merged image (D) showing Ki67+/Olig2− (solid arrow), Ki67−/Olig2+ (open arrow), and Ki67+/Olig2+ (solid arrowhead) populations. E: Comparison of the percentage of Ki67+ cells that were also Olig2+ revealed that more than half of proliferative cells are double-positive and these cells were distributed throughout the pons; no significant effect of age or location was observed (two-way ANOVA; time: F1,4 = 0.67, P = 0.46; location F1,4 = 1.61, P = 0.273). F: Confocal microscopy of section from pontine basis in 1-month sample labeled for Ki67 (red), GFAP (green), and DAPI (blue) illustrating that proliferative cells are not reactive astrocytes and do not colocalize with GFAP. Scale bars = 20 μm.
proliferating cells in the 2–7 months age group, the proportion of proliferating cells that were Olig2\(^+\) remained stable (61.8 ± 2.57\%) and was not statistically different between pons subregions or when compared to 0–1 month data (Fig. 6E).

Nestin and vimentin expression in the postnatal human pons

The above results indicate that more than half of the proliferating cells express Olig2. However, there was a significant fraction of Ki67\(^+\) cells that were Olig2\(^-\). A recent study describing nestin- and vimentin-positive cell populations in the pons throughout childhood (Monje et al., 2011) suggested that some such cells may correspond to neural stem cells. We therefore examined the spatial and temporal profile of nestin- and vimentin-expressing cells in the pons ventricular zone, tegmentum, and basis. At postnatal day 1, a dense population of nestin\(^+\), vimentin\(^+\), and nestin\(^+\)/vimentin\(^+\) cells was seen lining the ventricle (Fig. 7). Interestingly, the majority of these cells had radial processes into the tegmentum, suggesting the postnatal persistence of a population of radial glia. At this early timepoint, we also observed nestin\(^+\)/vimentin\(^+\) processes in both the tegmentum and basis. Interestingly, in the basis these double-labeled processes were oriented parallel to white matter tracts. A similar pattern of vimentin and nestin expression was observed at 1 and 2 months of age, although the total number of positive cells decreased. By 7 months, dorsal vimentin\(^+\)/nestin\(^+\) cells remained present in the ventricular region,
but only very rare single- or double-labeled cells were observed in the parenchyma of the tegmentum or basis. From 7 months through the later childhood years, this spatial restriction of nestin and vimentin expression to the ventricular lining was maintained, although the number of vimentin\(^+\) radial fibers, and to a greater degree the nestin\(^+\) processes, decreased over time. No specific labeling of nestin\(^+\) or vimentin\(^+\) processes was seen in the basis or tegmentum at any ages over 7 months.

DISCUSSION

The present morphometric analysis of the human postnatal pons demonstrates substantial growth of the pons throughout childhood, particularly in the basis pontis. The MRI and histological studies suggest that this expansion of the ventral pons is at least in part due to addition of oligodendrocytes and increased myelination. This finding is consistent with previous immunohistochemical and radiographic data showing that while myelination of the tegmentum is largely complete by birth, an increase in myelination of the basis pontis is observed in the first 3–4 months of life (Brody et al., 1987; Kinney et al., 1988; Nozaki et al., 1992). At the cellular level, the wave of Olig2\(^+\) cell proliferation observed not only in the basis, but also to a lesser degree in the tegmentum, appears to peak early in postnatal life (0–1 month). Yet the pons continues to grow at high rates up to 1 year and at slower rates up to 5 years of age. This suggests that only some of the observed growth can be attributed to cell addition, and that the slow, steady growth observed from 1 to 5 years is likely due to increase in the neuropil, including expansion of the corticospinal tract. Consistent with this finding, a previous study demonstrated a decrease in neuronal number and volume in the pontine nuclei of the basis between birth and 2 months (Nozaki et al., 1992). Our data suggest that most of the growth after 1 year is related to an increase in cellular processes and cellular size rather than cell number.

The tremendous growth of the human pons during infancy and childhood raises fundamental questions, not only of the basic cellular mechanisms that explain this expansion, but also about its functional correlates. Pontine growth is likely associated with consolidation of neural circuits for motor coordination and learned behaviors during this critical stage of human development, consistent with experimental data showing robust synaptogenesis and consolidation of cortico-pontine tracts in the early postnatal time period (Adams et al., 1980; Mihailoff et al., 1984). The ventral pool of proliferating Olig2\(^+\) cells within the basis pontis may be critical for the robust expansion of white matter tracts in this region during early postnatal life. While the source of this postnatal proliferative population in the pons is unclear, it raises the possibility that persistent primary progenitors in germinal niches of the postnatal brainstem, analogous to the rhombic lip present during fetal development, may continue to be a source of Olig2\(^+\) precursors. Alternatively, these precursors may be produced before birth, and migrate widely to proliferate and differentiate locally.

The present results are also relevant to better understand the origins of one of the most lethal types of pediatric brain tumors. Diffuse intrinsic pontine glioma (DIPG) remains an important clinical problem, comprising 10–15% of childhood brain tumors (Fangusaro, 2009). Patients typically present at 5–9 years of age and have a dismal prognosis, with a median survival of less than 1 year (Wagner et al., 2006). Genomic studies have identified several mutations found in DIPG, including H3F3A/HIST1H3B (Wu et al., 2012), PDGFR\(\alpha\) (Zargarhooni et al., 2010; Paugh et al., 2011; Puget et al., 2012), TP53 (Grill et al., 2012), and ADAM3A (Barrow et al., 2011). Recent work suggests that progenitor cells give rise to other pediatric brain tumors, such as cerebellar granule cell precursor-derived medulloblastomas (Schuller et al., 2008), precerebellar neuronal precursor-derived medulloblastomas (Gibson et al., 2010), and radial glia-derived ependymomas (Taylor et al., 2005). Given the predominant ventral growth of DIPG (Fischbein et al., 1996) and a recent report of expression of progenitor markers in the postnatal human pons (Monje et al., 2011), it has been suggested that the ventral pons may contain the cell of origin for DIPG. In addition, a recent report demonstrated that >90% of DIPGs express Olig2 (Ballester et al., 2013). These data, in combination with the findings in the present study, suggest some interesting hypotheses. First, the presence of a dorsal vimentin\(^+\)/nestin\(^+\) cell population in the human pons throughout childhood suggests that this cell population may be a potential cell of origin for focal human brainstem tumors, which tend to occur dorsally in the region of the aqueduct of Sylvius/4th ventricle in the midbrain, pons, and medulla (Fischbein et al., 1996). Second, the scarcity of proliferative progenitors past early postnatal stages suggests that if DIPG originates from a proliferating cell in the ventral pons, oncogenic events would likely occur early in childhood, and it may take years for these tumors to become fully malignant. By contrast, if DIPG originates shortly before diagnosis (ages 5–9), a time period where we observed that pons growth is rapidly decelerating, then DIPG may derive from transformation of a nonproliferative cell, for example, a Olig2\(^+\)/Ki67\(^-\) cell.
We observed very low numbers of Ki67\(^+\) cells in the pons during the period when DIPG is most frequently diagnosed, although we cannot exclude that those rare dividing cells could be the origin of these tumors.

In summary, the present study provides a quantitative description of the extraordinary growth of the human pons during infancy and childhood. Our data indicate that both the tegmentum and the basis grow significantly during this period, but the basis pontis expands at rates higher than the tegmentum or the medulla. This preferential growth of the basis is at least in part mediated by increased myelination, consistent with the presence of a large number of proliferating Olig2\(^+\) cells during early postnatal ages. These data, in conjunction with previous studies of brainstem development, suggest distinct cell populations as potential cells of origin for different brainstem tumors. Future studies evaluating the origin and fate of postnatal progenitor populations in model systems may give insight into the mechanisms of the postnatal growth of the pons and a possible cell of origin of pediatric pontine gliomas.

ACKNOWLEDGMENTS

M.T. was supported by the UCSF Neurological Surgery Residency Program. R.L. is supported by the UCSF Medical Scientist Training Program, Neuroscience Graduate Program, and Discovery Fellows Program. D.H.R. is an HHMI Investigator. A.A.-B. is the Heather and Melanie Muss Endowed Chair and Professor of Neurological Surgery. Procurement of pediatric brain tissue at UCSF was supported by University of California MRPI grant #142675 to E.J.H. The authors thank Jeanelle Ariza of the Pediatric Neuropathology Research Laboratory (UCSF, HHMI) for assistance with myelin staining and the laboratories of Drs. Arnold Kriegstein and Patrick McQuillen for assistance with automated microscopy techniques.

CONFLICT OF INTEREST

The authors report no conflicts of interest.

ROLE OF AUTHORS

All authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: MT, RL, NS, DR, AA-B. Acquisition of data: MT, RL, TN, AB. Analysis and interpretation of data: MT, RL, TN, AB, EH, DR, AA-B. Drafting of the article: MT, RL, TN. Critical revision of the article for important intellectual content: MT, RL, TN, NS, AB, EH, DR, AA-B. Statistical analysis: MT, RL. Obtained funding: MT, EH, DR, AA-B. Administrative, technical, and material support: MT, RL, TN, EH. Study supervision: AA-B, DR.

LITERATURE CITED

